Wnioskowanie Statystyczne - Lista 8.

leng = (\xs -> foldl (\x y -> x+1) 0 xs) 
 
ex xs = (sum xs) / (leng xs)
 
stddev xs = sqrt $ (/(leng xs)) $sum $ map (\x -> (x - (ex xs))^2) xs

Zadanie 1.

Zadanie 2.

Zadanie 3.

mx: 0.777000, my: 0.701000, sx: 1.462176, sy: 1.324404, cov: 0.383190, cor: 0.197876
Prosta regresji: y = 0.561737x + 0.179232
from itertools import imap, product
from math import sqrt
coords = [3, 3.5, 4, 4.5, 5]
fxy = {3:{}, 3.5:{}, 4:{}, 4.5:{}, 5:{}}
 
points = (
    (3, 3, 0.16),
    (3, 3.5, 0.12),
    (3, 4, 0.08),
    (3.5, 3.5, 0.04),
    (3.5, 4, 0.08),
    (3.5, 4.5, 0.12),
    (4, 4, 0.08),
    (4, 4.5, 0.06),
    (4, 5, 0.01),
    (4.5, 4.5, 0.05),
    (4.5, 5, 0.08),
    (5, 5, 0.08),
)
 
for x, y, v in points:
    fxy[x][y] = v
 
def f_xy((x, y)):
    return fxy[x].get(y, 0)
 
def fx(y):
    fx = 0
    for x in coords:
        fx += fxy[x].get(y, 0)
    return fx
 
def fy(x):
    fy = 0
    for y in coords:
        fy += fxy[x].get(y, 0)
    return fy
 
def idty(x):
    return x
 
def E(f, g, cs):
    ls = [g(c)*f(c) for c in cs]
    return sum(ls)/len(ls) 
 
mx = E(fx, idty, coords)
my = E(fy, idty, coords)
 
sx = sqrt(E(fx, lambda x: (x-mx)*(x-mx), coords))
sy = sqrt(E(fy, lambda y: (y-my)*(y-my), coords))
 
cov = E(f_xy, lambda (x, y): (x-mx)*(y-my), product(coords, repeat=2))
cor = cov/(sx*sy)
 
print "mx: %f, my: %f, sx: %f, sy: %f, cov: %f, cor: %f" % (mx, my, sx, sy, cov, cor)
 
# E([Y-(a+bX)]^2) - min
 
# b = CXY / D^2X, a = EY - bEX
 
b = cov / (sx*sx)
a = my - b*mx
 
print "Prosta regresji: y = %fx + %f" % (a, b)

Zadanie 4.

Zadanie 5.

Mała próbka.
\overline X = 333
S = 33.16323265304515
\displaystyle P \left( \overline{X} - t_{1 - \frac{\alpha}{2}} \frac{S}{\sqrt{n-1}} < m < \overline{X} + t_{1 - \frac{\alpha}{2}} \frac{S}{\sqrt{n-1}} \right) = 1 - \alpha

Zadanie 6.

Mała próbka.
\overline X = 1.574
S = 0.043
\displaystyle P \left( \overline{X} - t_{1 - \frac{\alpha}{2}} \frac{S}{\sqrt{n-1}} < m < \overline{X} + t_{1 - \frac{\alpha}{2}} \frac{S}{\sqrt{n-1}} \right) = 1 - \alpha

Zadanie 7.

Duża próbka.
\overline X = 37.5
S = 39.566399886772615
\displaystyle P \left( \overline{X} - u_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} < m < \overline{X} + u_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \right) = 1 - \alpha

Zadanie 8.

Mała próbka.
\overline X = 100.0
S = 11.586630226256467
To jest dla wariancji, czyli pierwiastek, z obu stron:
\displaystyle P \left( \frac{nS^2}{\chi^{2}_{1 - \frac{\alpha}{2}, n - 1}} < \sigma^2 < \frac{nS^2}{\chi^{2}_{\frac{\alpha}{2}, n - 1}} \right)= 1 - \alpha

Zadanie 9.

Duża próbka.
\displaystyle P \left( \frac{S}{1+ \frac{u_{\alpha}}{\sqrt{2n}}} < \sigma < \frac{S}{1 - \frac{u_{\alpha}}{\sqrt{2n}}} \right)= 1 - \alpha

Zadanie 10.

Duża próbka.

Przedział:

p = \frac k n

\displaystyle \left(p - u_{1-\alpha/2} \sqrt{\frac {p(1-p)}n}, p + u_{1-\alpha/2} \sqrt{\frac {p(1-p)}n}\right)

Zadania 5-10 - wyliczenie

5.
[(312.96431003654271, 353.03568996345729), (308.36923762299926, 357.63076237700074), (297.96555773250361, 368.03444226749639)]

6.
[(-9.7387607780359318, 12.886760778035931), (-12.059600199779362, 15.207600199779362), (-16.856231309036904, 20.004231309036907)]

7.
[(33.742550387392015, 41.257449612607985), (33.022722633937505, 41.977277366062495), (31.615860122640775, 43.384139877359225)]

8.
[(9.2700847290948065, 17.199689112976362), (8.8398005031199745, 18.520633113068985), (8.0922906651952005, 21.607026599096702)]

9.
[(0.022687893099167609, 0.03178546605420815), (0.022082482141430701, 0.033055090136681231), (0.020987900459555682, 0.035854128204083208)]

10.
[(0.089306808583436648, 0.19402652474989668), (0.079276047588324225, 0.20405728574500909), (0.059671494226666497, 0.22366183910666682)]
from scipy.stats import t, norm, chi2
from math import sqrt
 
n = 10
m = 333
S = 33.16323265304515
 
conf_t = map(lambda x: t.ppf(1-x/2, n), [0.1, 0.05, 0.01])
 
print "5."
print map(lambda conf: (m-conf*S/sqrt(n-1), m+conf*S/sqrt(n-1)), conf_t)
print
 
n = 26
m = 1.574
s = 0.043
 
conf_t = map(lambda x: t.ppf(1-x/2, n), [0.1, 0.05, 0.01])
 
print "6."
print map(lambda conf: (m-conf*S/sqrt(n-1), m+conf*S/sqrt(n-1)), conf_t)
print
 
n = 300
m = 37.5
S = 39.566399886772615
 
conf_u = map(lambda x: norm.ppf(1-x/2), [0.1, 0.05, 0.01])
 
print "7."
print map(lambda conf: (m-conf*S/sqrt(n), m+conf*S/sqrt(n)), conf_u)
print
 
n = 16
m = 100
S = 11.586630226256467
 
conf_chi = map(lambda a: (chi2.ppf(1-a/2, n-1), chi2.ppf(a/2,n-1)), [0.1, 0.05, 0.01])
 
print "8."
print map(lambda (conf1, conf2): (sqrt(n*S*S/conf1), sqrt(n*S*S/conf2)), conf_chi)
print
 
n = 50
S = sqrt(0.00068)
 
conf_u = map(lambda x: norm.ppf(1-x/2), [0.1, 0.05, 0.01])
 
print "9."
print map(lambda conf: (S*sqrt(2*n)/(sqrt(2*n-3)+conf),S*sqrt(2*n)/(sqrt(2*n-3)-conf)), conf_u)
print 
 
 
n = 120.0
k = 17.0
p = k/n
 
print "10."
print map(lambda conf: (p - conf*sqrt(p*(1-p)/n), p + conf*sqrt(p*(1-p)/n)), conf_u)
print
 
wnioskowanie_statystyczne/lista8.txt · ostatnio zmienione: 2010/05/17 10:18 przez alistra
 
Wszystkie treści w tym wiki, którym nie przyporządkowano licencji, podlegają licencji:MIT License
Recent changes RSS feed