
The tight deterministic time hierarchy

Martin F~rer

Department of Mathematics
University of THbingen

D-74 THbingen, Fed. Rep. of Germany

Abstract Let k be a constant ~ 2 ,

and let us consider only deterministic

k-tape Turing machines.

We assume t2(n) > n and t 2 is com-

putable in time t 2 . Then there is a

language which is accepted in time t 2 ,

but not accepted in any time td with

t~ (n) = o (t 2 (n))

Furthermore, we obtain a strong hier-

archy (isomorphic to the rationals ~)

for languages accepted in fixed space

and variable time.

d. Introduction

It is well known (see e.g. [5]) that

the slightest increase in the asymptotic

growth from the function sd to the

well-behaved function s 2 allows more

languages to be accepted (i.e. more

problems to be solved) by deterministic

~uring machines in space s 2 than in

space sl [q]. Whereas, it is only

known that more languages are accepted

in the well-behaved time t 2 than in

~rmission to copy without ~e all or part of this material is granted
provided tMt the copies are not made or distributed ~ r direct
commercial advanta~, the ACM copyright noti~ and t ~ title of the
publi~tion and i~ da~ appear, and notice is given that copying is by
~rmission of the Association ~ r Computing Machinery. To copy
otherwise, or to republish, requires a ~e and/or specific permission.

© 1 9 8 2 ACMO-89791-067-2/82/O05/O008 $ 0 0 . 7 5

time t d , if t1(n) log t~(n) : o(t2(n))

(diagonalization method [2] combined

with fast tape reduction [3]). For nice

functions td which are bounded by an

exponential function (i.e. tl does not

grow too much), the factor log tq(n)

can be reduced to (log td(n)) s [7]

(for every s > O) by applying the pad-

ding methods of Ruby and P.C. Fischer

[9].

A much tighter result was obtained

by Paul [6, 7] for a fixed number of

tapes. For this case, he has reduced the

factor log td(n) to log* t1(n)

(log* n is 0 for n=J and defined by

+ log*Llog2~ for n > J .) We will

prove here that no factor at all is

necessary, t~(n) = o(t2(m)) is enough

for a fixed number k ~ 2 of tapes.

q) ~his work was supported by the

British Science Research Council and

by the Swiss National Foundation

2. Fast simulation

The major difficulty in getting a

tight hierarchy is to show that there

exists a universal k-tape Turing machine

which can simulate any k-tape Turing ma-

chine for a predetermined number of

steps without losing any time for count-

ing the steps.

The obvious thing to try is to keep

the step counter (containing a non-

negative integer p) and the code of

the simulated program q always near a

head of the simulating Turing machine.

In the program q the instruction cur-

rently executed is marked, and the

counter is decreased by one before each

step. Furthermore p and q are pushed

to follow the head movement. But pushing

p after each simulation step costs a

factor log p .

Paul [6] has noticed that it is not

necessary to push the whole counter all

the time. Pushing only a number of

length log log p is sufficient to

simulate and count log p steps. After

having simulated log p steps, we don't

mind when the head of the simulating

Turing machine spends 0(log p) steps

to walk back and collect the bigger part

of the counter (containing now p-

log p). We have at least two tapes.

Therefore the counter can be moved fast.

This method can be iterated. Instead

of moving a counter of length log ...

log p (i times log) after each

simulation step, a small subcounter of

length log log ... log p (i+J times

log) is separated and the big counter is

collected after log ... log p (i

times log) steps. It is not hard to see

that the time to simulate p steps is

0(p log*p) . And diagonalization yields

Paul's result [6]. (The present author

has discovered this independently but

later. This has initiated this work, but

for a long time Paul's result seemed to

be the best possible.)

The whole problem can be seen as a

distribution problem. Goods are stored

in the counter p . They have to be con-

sumed one piece at the time at the then

current head position, i.e. at many dif-

ferent places. The cost of transport is

proportional to the length of the dis-

tance, except when the distance is ex-

tremely short (shorter than the length

of the counter).

Paul's solution [6] makes sure that

transports are only made when absol-

utely necessary, and always the amount

of goods transported is chosen as big as

possible with low cost (i.e. extra cost

for transports of big counters over

short distances is avoided). We would

like to accept this solution as optimal.

How can we do better? The answer is: with

predistribution. We can set up a chain of

wholesale businesses and small shops

which keep the goods ready before the

consumer (i.e. the head on the tape)

comes across. Because our goods are just

integers this concept will be realized by

a new representation of integers.

3- A counter which can be chan~ed

ever#where locallF

A number in radix representation (say

decimal) can be decreased by one at the

right end, where the least significant

digit is located. In the average, the

carry propagation (actually it is a

"borrow", i.e. a negative carry) does not

go far, so that only digits near the

right end are changed. We introduce a new

redundant representation of non-negative

integers where every location (not only

the right end) has the property that in

the average only digits near that lo-

cation have ~o be changed in order to de-

crease the number by one.

We represent the number A by

B h A = ~ ~ ahj ahj E (O ,B-~]

h:X jEY

where X = {O,...,H] and

Y = {O,...,2H-h-q] .

Hence the coefficient of every B h is

instead of a digit a sum of several

digits.

I We arrange the ahj s in the nodes of a

binary tree:

- aHO is stored in the root,

- ah-Q 2j is stored in the left and

ah-~ 2j+~ in the right son of ahj ,

- hence, h is the height of the node

containing ahj .

We define b2h(2j+~) = ahj (see Figure

Figure 4: ~he tree of counters

and its implementation on a

one dimensional array.

Then at every odd position 2j+Q we

have a least significant digit b2j+Q

Definition

The word bQ...b2H+d_Q is called a

tree representation of height H of the

number

h~X jeY b2h(2J+~)

where X = [O,...,H] and

Y = [O,...,2H-h-Q]

Carries are propagated from every son

node to its father node, which is im-

plemented nearby when these nodes are

not high in the tree. And for B > 2

the average distance of the carry propa-

gation is bounded by a small constant.

To see this, we note first that the

distance from the position of ahj to

the position of its father is only 2 h

in the array. Now let all ahj be set

to B-Q initially. Then we choose m

times a j E [O,...,2H-Q] and subtract

one from aoj . Of course we propagate

iO

all the necessary carries as well. Hereby

at most Lm/BJ carries are necessary from

nodes of height h-~ to nodes of height

h . Hence for B > 2 , the sum of the

distances of carry propagation is at

most

H
w m 2h-~ m ~-(2/B) H

h=i
D

~herefore, when we start with full

counters~ then for every single run (i.e.

sequence of subtractions by one), the

average distance of carry propagation is

less than one. This is the basic prop-

erty of the tree representation.

Remark

We can also construct a tree represen-

tation of integers such that not only

subtraction, but also addition of one

(in any location of the tree represen-

tation) can be done with constant aver-

age carry propagation distance. We just

allow the B-ary digits to be elements

of ~-(B-~) 0 ,B-X] . But for

the application in this paper, we don't

need such a representation of integers.

4. Simulation in linear time

Let q be any reasonable code of a

~uring machine M . This means, there
q

is a constant c such that every step

of M
q

~ere

q •

Lemma

For ~IZ

can be simulated in time clql ,

)ql is the length of the code

k~ 2 , there is a k-tape Turing

machine M which on any input of the

form w# p# q (where w is a word over

the fixed alphabet ~ , p is a B-ary non-

negative integer and q is the code of a

k-tape Turing machine M over the alpha-
q

bet ~) simulates exactly p steps of

M with input w . Furthermore M does
q

this simulation in time O(lwl + plql) ,

i.e. iN a time linear in p .

Outline of the proof

First we build a tree representation

of a number p' with all counters full

(i.e. B-X). We choose p' such that

p" = p-p' is not negative and not much

bigger than p' . We place this tree rep-

resentation on a tape of M such that

the head is in its center. If this tree

representation of p' has length L , we

will see that we can build it in time

O(L) . The simulation determines the head

movement. But the basic property of the

tree representation implies that we can

simulate s ~ (L+~)/2 steps without

spending more than time O(s) for count-

ing the steps.

When the counter at the root is al-

ready 0 , but we try to subtract one

from it, then we set this counter to -7

and we interrupt the simulation. In time

O(L) we convert the tree representation

to normal B-ary notation. Now we build a

new tree representation with a smaller

tree but with full counters.

When the head of the simulating

Turing machine M leaves the area of the

ii

tree representation, then we also inter-

rupt the simulation and move the tree rep-

resentation to have the head again in the

center. Alternatively we could do the same

procedure as we do when the root counter

gets -~

We present the details of the proof

in the Appendix.

5. The tight time hierarchy

Definition

A function t : ~ is time-construct-

ible on k-tape Turing machines, if there

exists a deterministic k-tape Turing ma-

chine which reads the input n in unary

notation and computes t(n) in binary

notation, while doing at most t(n)

steps.

Remark

This definition of Paul [7] is different

from the definition of time-construct-

ibility used in [5] and other places. The

advantages o£ Paul's definition are:

q) For every well-behaved function t

with n = o(t(n) it is easy to see

that t is time-constructible.

2) Time constructibility in this sense is

what is actually used in hierarchy

theorems.

3) Every function t which is fully

time-constructible on k tapes in the

traditional sense is also k-tape time-

constructible in our sense. Actually a

proof of 3) is easy to find, but it in-

volves the methods developed in the

preceding paragraph.

Definition

DTIMEk(t) is the set of languages ac-

cepted by k-tape deterministic Turing

machines in time t (i.e. for words of

length n , the number of steps is at

most t(n))

Well known diagonalization techniques

(see e.g. [5]) together with the Lemma

of the preceeding paragraph imply:

Theorem

If k~ 2 and t 2 is time-constructible

on k-tape Turing machines, then there is

a language in DTIMEk(t 2) which is not

in DTIMEk(t 1) for any t I with

tl(n) = o(t2(n))

Remark

This Theorem seems not to be true for d-

dimensional tapes with d > J . On the

other hand, it is easy to see that Paul's

result [6] (gap at most a factor

log~t~(n)) holds for any fixed number

of tapes of fixed dimension d .

6. A time hierarchy for fixed space

In complexity theory, hierarchies ob-

tained by diagonalization usually in-

volve i.o. (infinitely often) lower

bounds, i.e. the lower bounds hold (for

every Turing machine accepting the lang-

uage) for infinitely many inputs. And

a.e. (almost everywhere) upper bounds

correspond to these lower bounds. A

slight modification makes it always

possible to obtain a quantitative result

about the density of difficult inputs. In

particular, we can usually get lower

12

bounds which hold for almost every input

length.

When all lower bounds have to hold for

almost every input length, then it is no

more possible to transform a discrete

hierarchy into a dense hierarchy by sim-

ply allowing more time only on certain

subsets of the word lengths.

Paul [6] has proven an w-hierarchy

(there is a set of complexity classes

ordered isomorphic to ~) for a fixed

space-function and a sequence ot time-

functions. This w-hierarchy is a cor-

ollary to the following theorem.

Theorem 2 (Paul [~)

If the functions t and 6 are both

constructible on k tapes (k~ 2) in

time t and log*t(n) ~ 8(n)

log log t(n) , then DTIME k (t . 8)

DSPACETIME k (t,t ~ 226) (Def. below).

By taking Paul's proof, but using the

faster simulation, we obtain the same

theorem without the condition log*t(n)

8(n) . This leads immediately to the

conjecture, that we can obtain a dense

hierarchy from the improved Theorem 2.

This conjecture is correct, but it

turned out that Paul's simulation also

implies this dense hierarchy.

In order to get a strong hierarchy,

where the lower bounds hold for almost

all input lengths, we first strengthen

Theorem 2.

Definition

DSPACETINEk(S, t) is the set of languages

accepted by k-tape deterministic Turing

machines simultaneously in space s and

time t .

Definition

For S ~ ~ ~(S) is the set of words in

whose lengths are in S .

Theorem 3

If the functions t and 8 are both

constructible on k tapes (k~ 2) in

time t and 8(n) ~ t(n) , then there is

a language ~ E DSPACETIME k (t,t. 8) ,

such that there is no language ~a and no

infinite set S~J with ~(S) = ~'(S)

and ~ E DTIMEk (t . log log 6) .

Proof

It is easy to transform Paul's proof of

Theorem 2 into a proof of Theorem 3. We

replace 6 by log log 6 , and instead

of just doing a simulation, we also do a

diagonalization. On input w , the

Turing machine N is simulated with
w

input w . To get the lower bound for

almost every input length, we have to

make sure that every Turing machine has

codes of almost every length.

Theorem 4

For every (on

ible function

t is not bounded by a constant), there

is a (densely ordered) set of functions

[8 : q E ~(0,1)~ (~ hierarchy) such
q

that for every q E ~ ~ (0,1) , there is

a language ~ with ~E DSPACETIME k

(t,t. 8) , but if S is infinite, ~ (S) q

= ~ (S) and p~ q , then

k~ 2 tapes) time-construct-

t with t(n)k n+1 (i.e.

1B

~ DSPACETIME k (t,t.6) .
P

Proof

We have to solve the following problem:

Find easy computable functions 8 such
q

that

(i) 6 (n) = o(t(n)) for all q and q

(ii) 6p(n) = o(log log 6q(n)) for all

p > q •

First we define functions o by
)tq~ q

O q(n) = 22"J ~ . For n 3 q-P , we have

qn ~ 3 + pn , [q~ ~ L3+p~ and therefore

~p(n) < log log log Oq(n) =

o(log log ~q(n))

So the functions ~ have the property
q

(ii), but they grow too fast.

But the functions 6 defined by
q

6q(n) = e q (l O g * t (n)) s o l v e t h e p r o b l e m .

Now by Theorem }, there is a

language ~ E DSPACETI~iE k (t,t.6q) and

for any infinite set S ~ ~ and any ~J

with ~'(S) = ~(S) we have

~6 DTIME k (t.log log 6q) Therefore

6p(n) = o(log log 6q(n)) implies

-- ~' 6 DTIM~ k (t-6p(n)) for all p < q .

Hence ~'~ DSPACETIKE (t,~6p)

7. A final remark

It is hoped that the tree representation

of integers will have applications in

other areas of computer science. Maybe

in some connections a similar but a bit

more complicated representation of in-

tegers might be useful. This represen-

tation was used in an earlier version of

this paper. It still has the basic prop-

erty of tree representation. The differ-

ence is that higher in the tree more

digits are stored (they cannot be im-

plemented successively on an array), and

therefore the representation of a number

p is much shorter, e.g. log~ p . In

this paper the length of the represen-

tation of p is L = p~/log B

Acknowledgment

Sven Skyum has helped me to find this

elegant tree representation based on

binary trees. ~his has simplified the

proof of ~heorem ~ significantly. Peter

van Emde Boas has pointed out to me that

an earlier version of Theorem ~ (where

lower bounds have to hold only in-

finitely often) is a corollary to Paul's

w-hierarchy.

References

[~] Hartmanis, J., P.M. Lewis II, and R.

E. Stearns, "Hierarchies of memory

limited computations," Prof. Sixth

Annual IEEE Symp. on Switching

Circuit Theory and Logical Design

(~965), pp. ~79-~90.

[2] Hartmanis, J., and R.E. Stearns, "On

the computational complexity of al-

gorithms," Trans. AMS ~7 (~965),

285-3o6.

[3] Hennie, F.C., and R.E. Stearns, "Two-

tape simulation of multitape Turing

machines," J. ACM ~3 ~966, pp. 533-546.

14

[4] Hopcroft, J.E., W.J. Paul, and L.G.

Valiant, "On time versus space,"

J. ACM 24 (~977), Pp. 332-337.

[5] Hopcroft, J.E., and J.D. Ullman,

Introduction to Automata Theory,

Languages, and Computation, Addison-

Wesley, Reading, Mass. (~979)-

[6] Paul, W.J., "On time hierarchies,"

Proc. Ninth Annual ACM Symposium on

the Theory of Computing (~977),

pp. 2~8-222.

[7] Paul, W.J., Komplexit~tstheorie,

Teubner StudienbHcher Informatik,

Stuttgart (~978).

[8] Paul, W.J., R.E. Tarjan, and J.R.

Celoni, "Space bounds for a game on

graphs," Mathematical System Theory

~0 (~997), PP. 239-25~.

[9] Ruby, S., and P.C. Fischer, "Trans-

lational methods and computational

complexity," Proc. Sixth Annual iEEE

Symp. on Switching Circuit Theory and

Logical Design (q965), pP. q73-q78.

Appendix:

Details of the linear time simulation

(Lemma, paragraph 4).

To describe the procedures for handling

the tree representation of integers more

precisely, we first define the storage

organization.

tape

direct simulation of M
q

track

code q (current instruction

marked)

tree representation of p'

track 2

track 3

R, L, T: right son, left son,

top (= root)

current carry propagation path

marked

rest p" = p-p'

track 4

track 5

track 6

Figure 2: The organization of tape ~.

Two work tapes, say tape ~ and tape 2 have

six tracks each. Track ~ of each tape

always contains a copy of the corresponding

tape of the simulated Turing machine N
q

The purpose of the other tracks of tape

is described in Figure 2. Under each coun-

ter (= B-ary digit) in the tree represen-

tation of the positive integer p' , we

write in track 4 , if the position of the

counter in the tree is that of a left or

right son or the top. The tracks 2 to 6

of tape 2 provide space to copy the cor-

responding tracks of tape ~. This copying

is necessary to move information fast.

Now we describe the different pro-

cedures which have to be done from time to

time during the simulation.

a) Construction of the tree representation

First we note that the value of a number

in tree representation of height H with

all counters full is

15

H BH+d_2H+ d B H+2

h~ =O

If p is less than a constant c ~ B 2

(typically c is chosen much bigger),

then we don't construct a tree represen-

tation, but we do the counting during the

simulation in normal B-ary notation. If

p ~ c then we choose H = LlOgB~-2 .

This implies p' ~ p and the rest

p" = p-p' is not too big. We compute p"

and store it in track 6.

Now the tree representation of p'

can be put on track 3. It is just a se-

quence of L = 2H+~-q times the symbol

B-~ . To find the R (right), L (left)

and T (top) markings for track 4, we

note that the j-th marking (j=~,...,L)

is R (resp. L, T) iff j in binary

(without leading zeros) is of the form

x~O...O (resp. xO~O...O, ~0...0)

It is clear that all this can be

done in time O(L)

b) Destruction of the tree representation

The values stored in the leaves (odd

positions) are added to the rest p" ,

which is first copied onto tape 2. Then

all leaves are cut by copying only the

even positions of the tree representation

onto tape 2. Naturally the remaining tree

is compressed to implementation length

LL/~ . This procedure is iterated, but

each time the additions into p" are done

at the next higher B-ary position.

As for the construction, the time for

destruction is only 0(~) . In both cases,

even Llog B would be fast enough be-

cause at least BH+~_~ ~ Llog B many

simulation steps have been done in the

meantime.

c) Carries

When we have to do a carry, then we mark

its path on track 5- This path has either

length ~ , or twice the length of the

carry which has just been done. Doubling

the path is easy, because we use a second

tape. The markings on track 4 tell us on

which side to find the father node. Be-

fore doing carries, we have put a dis-

tinguishing sign at the place where the

simulation has to continue, and we always

remember if this place is on the left or

the right of the current head position.

Then, finding back is easy.

The time is proportional to the

length of the carry propagation path,

which is shorter than ~ in the average

(if no carry means length 0).

d) Shift of the tree representation

When the head of tape ~ leaves the area

of the tree representation, then we move

the tree representation by (L+~)/2 .

We can move the rest p" with it, be-

cause the length of the B-ary represen-

tation of p" is O(L) (even O(log L)).

The time for the shift is O(L) and is

charged to the preceeding (~+~)/2 simu-

lation steps.

16

