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Abstract Let k be a constant ~ 2 , 

and let us consider only deterministic 

k-tape Turing machines. 

We assume t2(n) > n and t 2 is com- 

putable in time t 2 . Then there is a 

language which is accepted in time t 2 , 

but not accepted in any time td with 

t~ (n )  = o ( t 2 ( n ) )  

Furthermore, we obtain a strong hier- 

archy (isomorphic to the rationals ~ ) 

for languages accepted in fixed space 

and variable time. 

d. Introduction 

It is well known (see e.g. [5]) that 

the slightest increase in the asymptotic 

growth from the function sd to the 

well-behaved function s 2 allows more 

languages to be accepted (i.e. more 

problems to be solved) by deterministic 

~uring machines in space s 2 than in 

space sl [q]. Whereas, it is only 

known that more languages are accepted 

in the well-behaved time t 2 than in 
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time t d , if t1(n) log t~(n) : o(t2(n)) 

(diagonalization method [2] combined 

with fast tape reduction [3]). For nice 

functions td which are bounded by an 

exponential function (i.e. tl does not 

grow too much), the factor log tq(n) 

can be reduced to (log td(n)) s [7] 

(for every s > O) by applying the pad- 

ding methods of Ruby and P.C. Fischer 

[9]. 

A much tighter result was obtained 

by Paul [6, 7] for a fixed number of 

tapes. For this case, he has reduced the 

factor log td(n) to log* t1(n) 

(log* n is 0 for n=J and defined by 

+ log*Llog2~ for n > J .) We will 

prove here that no factor at all is 

necessary, t~(n) = o(t2(m)) is enough 

for a fixed number k ~ 2 of tapes. 

q) ~his work was supported by the 

British Science Research Council and 

by the Swiss National Foundation 



2. Fast simulation 

The major difficulty in getting a 

tight hierarchy is to show that there 

exists a universal k-tape Turing machine 

which can simulate any k-tape Turing ma- 

chine for a predetermined number of 

steps without losing any time for count- 

ing the steps. 

The obvious thing to try is to keep 

the step counter (containing a non- 

negative integer p ) and the code of 

the simulated program q always near a 

head of the simulating Turing machine. 

In the program q the instruction cur- 

rently executed is marked, and the 

counter is decreased by one before each 

step. Furthermore p and q are pushed 

to follow the head movement. But pushing 

p after each simulation step costs a 

factor log p . 

Paul [6] has noticed that it is not 

necessary to push the whole counter all 

the time. Pushing only a number of 

length log log p is sufficient to 

simulate and count log p steps. After 

having simulated log p steps, we don't 

mind when the head of the simulating 

Turing machine spends 0(log p) steps 

to walk back and collect the bigger part 

of the counter (containing now p- 

log p). We have at least two tapes. 

Therefore the counter can be moved fast. 

This method can be iterated. Instead 

of moving a counter of length log ... 

log p (i times log) after each 

simulation step, a small subcounter of 

length log log ... log p (i+J times 

log) is separated and the big counter is 

collected after log ... log p (i 

times log) steps. It is not hard to see 

that the time to simulate p steps is 

0(p log*p) . And diagonalization yields 

Paul's result [6]. (The present author 

has discovered this independently but 

later. This has initiated this work, but 

for a long time Paul's result seemed to 

be the best possible.) 

The whole problem can be seen as a 

distribution problem. Goods are stored 

in the counter p . They have to be con- 

sumed one piece at the time at the then 

current head position, i.e. at many dif- 

ferent places. The cost of transport is 

proportional to the length of the dis- 

tance, except when the distance is ex- 

tremely short (shorter than the length 

of the counter). 

Paul's solution [6] makes sure that 

transports are only made when absol- 

utely necessary, and always the amount 

of goods transported is chosen as big as 

possible with low cost (i.e. extra cost 

for transports of big counters over 

short distances is avoided). We would 

like to accept this solution as optimal. 

How can we do better? The answer is: with 

predistribution. We can set up a chain of 

wholesale businesses and small shops 

which keep the goods ready before the 

consumer (i.e. the head on the tape) 



comes across. Because our goods are just 

integers this concept will be realized by 

a new representation of integers. 

3- A counter which can be chan~ed 

ever#where locallF 

A number in radix representation (say 

decimal) can be decreased by one at the 

right end, where the least significant 

digit is located. In the average, the 

carry propagation (actually it is a 

"borrow", i.e. a negative carry) does not 

go far, so that only digits near the 

right end are changed. We introduce a new 

redundant representation of non-negative 

integers where every location (not only 

the right end) has the property that in 

the average only digits near that lo- 

cation have ~o be changed in order to de- 

crease the number by one. 

We represent the number A by 

B h A = ~ ~ ahj ahj E (O .... ,B-~] 

h:X jEY 

where X = {O,...,H] and 

Y = {O,...,2H-h-q] . 

Hence the coefficient of every B h is 

instead of a digit a sum of several 

digits. 

I We arrange the ahj s in the nodes of a 

binary tree: 

- aHO is stored in the root, 

- ah-Q 2j is stored in the left and 

ah-~ 2j+~ in the right son of ahj , 

- hence, h is the height of the node 

containing ahj . 

We define b2h(2j+~) = ahj (see Figure 

Figure 4: ~he tree of counters 

and its implementation on a 

one dimensional array. 

Then at every odd position 2j+Q we 

have a least significant digit b2j+Q 

Definition 

The word bQ...b2H+d_Q is called a 

tree representation of height H of the 

number 

h~X jeY b2h(2J+~) 

where X = [O,...,H] and 

Y = [O,...,2H-h-Q] 

Carries are propagated from every son 

node to its father node, which is im- 

plemented nearby when these nodes are 

not high in the tree. And for B > 2 

the average distance of the carry propa- 

gation is bounded by a small constant. 

To see this, we note first that the 

distance from the position of ahj to 

the position of its father is only 2 h 

in the array. Now let all ahj be set 

to B-Q initially. Then we choose m 

times a j E [O,...,2H-Q] and subtract 

one from aoj . Of course we propagate 

iO 



all the necessary carries as well. Hereby 

at most Lm/BJ carries are necessary from 

nodes of height h-~ to nodes of height 

h . Hence for B > 2 , the sum of the 

distances of carry propagation is at 

most 

H 
w m 2h-~ m ~-(2/B) H 

h=i 
D 

~herefore, when we start with full 

counters~ then for every single run (i.e. 

sequence of subtractions by one), the 

average distance of carry propagation is 

less than one. This is the basic prop- 

erty of the tree representation. 

Remark 

We can also construct a tree represen- 

tation of integers such that not only 

subtraction, but also addition of one 

(in any location of the tree represen- 

tation) can be done with constant aver- 

age carry propagation distance. We just 

allow the B-ary digits to be elements 

of ~-(B-~) ..... 0 .... ,B-X] . But for 

the application in this paper, we don't 

need such a representation of integers. 

4. Simulation in linear time 

Let q be any reasonable code of a 

~uring machine M . This means, there 
q 

is a constant c such that every step 

of M 
q 

~ere 

q • 

Lemma 

For ~IZ 

can be simulated in time clql , 

)ql is the length of the code 

k~ 2 , there is a k-tape Turing 

machine M which on any input of the 

form w# p# q (where w is a word over 

the fixed alphabet ~ , p is a B-ary non- 

negative integer and q is the code of a 

k-tape Turing machine M over the alpha- 
q 

bet ~ ) simulates exactly p steps of 

M with input w . Furthermore M does 
q 

this simulation in time O(lwl + plql) , 

i.e. iN a time linear in p . 

Outline of the proof 

First we build a tree representation 

of a number p' with all counters full 

(i.e. B-X). We choose p' such that 

p" = p-p' is not negative and not much 

bigger than p' . We place this tree rep- 

resentation on a tape of M such that 

the head is in its center. If this tree 

representation of p' has length L , we 

will see that we can build it in time 

O(L) . The simulation determines the head 

movement. But the basic property of the 

tree representation implies that we can 

simulate s ~ (L+~)/2 steps without 

spending more than time O(s) for count- 

ing the steps. 

When the counter at the root is al- 

ready 0 , but we try to subtract one 

from it, then we set this counter to -7 

and we interrupt the simulation. In time 

O(L) we convert the tree representation 

to normal B-ary notation. Now we build a 

new tree representation with a smaller 

tree but with full counters. 

When the head of the simulating 

Turing machine M leaves the area of the 
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tree representation, then we also inter- 

rupt the simulation and move the tree rep- 

resentation to have the head again in the 

center. Alternatively we could do the same 

procedure as we do when the root counter 

gets -~ 

We present the details of the proof 

in the Appendix. 

5. The tight time hierarchy 

Definition 

A function t : ~ is time-construct- 

ible on k-tape Turing machines, if there 

exists a deterministic k-tape Turing ma- 

chine which reads the input n in unary 

notation and computes t(n) in binary 

notation, while doing at most t(n) 

steps. 

Remark 

This definition of Paul [7] is different 

from the definition of time-construct- 

ibility used in [5] and other places. The 

advantages o£ Paul's definition are: 

q) For every well-behaved function t 

with n = o(t(n) it is easy to see 

that t is time-constructible. 

2) Time constructibility in this sense is 

what is actually used in hierarchy 

theorems. 

3) Every function t which is fully 

time-constructible on k tapes in the 

traditional sense is also k-tape time- 

constructible in our sense. Actually a 

proof of 3) is easy to find, but it in- 

volves the methods developed in the 

preceding paragraph. 

Definition 

DTIMEk(t) is the set of languages ac- 

cepted by k-tape deterministic Turing 

machines in time t (i.e. for words of 

length n , the number of steps is at 

most t(n)) 

Well known diagonalization techniques 

(see e.g. [5]) together with the Lemma 

of the preceeding paragraph imply: 

Theorem 

If k~ 2 and t 2 is time-constructible 

on k-tape Turing machines, then there is 

a language in DTIMEk(t 2) which is not 

in DTIMEk(t 1) for any t I with 

tl(n) = o(t2(n)) 

Remark 

This Theorem seems not to be true for d- 

dimensional tapes with d > J . On the 

other hand, it is easy to see that Paul's 

result [6] (gap at most a factor 

log~t~(n)) holds for any fixed number 

of tapes of fixed dimension d . 

6. A time hierarchy for fixed space 

In complexity theory, hierarchies ob- 

tained by diagonalization usually in- 

volve i.o. (infinitely often) lower 

bounds, i.e. the lower bounds hold (for 

every Turing machine accepting the lang- 

uage) for infinitely many inputs. And 

a.e. (almost everywhere) upper bounds 

correspond to these lower bounds. A 

slight modification makes it always 

possible to obtain a quantitative result 

about the density of difficult inputs. In 

particular, we can usually get lower 
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bounds which hold for almost every input 

length. 

When all lower bounds have to hold for 

almost every input length, then it is no 

more possible to transform a discrete 

hierarchy into a dense hierarchy by sim- 

ply allowing more time only on certain 

subsets of the word lengths. 

Paul [6] has proven an w-hierarchy 

(there is a set of complexity classes 

ordered isomorphic to ~) for a fixed 

space-function and a sequence ot time- 

functions. This w-hierarchy is a cor- 

ollary to the following theorem. 

Theorem 2 (Paul [~ ) 

If the functions t and 6 are both 

constructible on k tapes (k~ 2) in 

time t and log*t(n) ~ 8(n) 

log log t(n) , then DTIME k (t . 8) 

DSPACETIME k (t,t ~ 226 ) (Def. below). 

By taking Paul's proof, but using the 

faster simulation, we obtain the same 

theorem without the condition log*t(n) 

8(n) . This leads immediately to the 

conjecture, that we can obtain a dense 

hierarchy from the improved Theorem 2. 

This conjecture is correct, but it 

turned out that Paul's simulation also 

implies this dense hierarchy. 

In order to get a strong hierarchy, 

where the lower bounds hold for almost 

all input lengths, we first strengthen 

Theorem 2. 

Definition 

DSPACETINEk(S, t) is the set of languages 

accepted by k-tape deterministic Turing 

machines simultaneously in space s and 

time t . 

Definition 

For S ~ ~ ~(S) is the set of words in 

whose lengths are in S . 

Theorem 3 

If the functions t and 8 are both 

constructible on k tapes (k~ 2) in 

time t and 8(n) ~ t(n) , then there is 

a language ~ E DSPACETIME k (t,t. 8 ) , 

such that there is no language ~a and no 

infinite set S~J with ~(S) = ~'(S) 

and ~ E DTIMEk ( t . log log 6 ) . 

Proof 

It is easy to transform Paul's proof of 

Theorem 2 into a proof of Theorem 3. We 

replace 6 by log log 6 , and instead 

of just doing a simulation, we also do a 

diagonalization. On input w , the 

Turing machine N is simulated with 
w 

input w . To get the lower bound for 

almost every input length, we have to 

make sure that every Turing machine has 

codes of almost every length. 

Theorem 4 

For every (on 

ible function 

t is not bounded by a constant), there 

is a (densely ordered) set of functions 

[8 : q E ~(0,1)~ (~ hierarchy) such 
q 

that for every q E ~ ~ (0,1) , there is 

a language ~ with ~E DSPACETIME k 

(t,t. 8 ) , but if S is infinite, ~ (S) q 

= ~ (S) and p~ q , then 

k~ 2 tapes) time-construct- 

t with t(n)k n+1 (i.e. 

1B 



# ~ DSPACETIME k (t,t.6) . 
P 

Proof 

We have to solve the following problem: 

Find easy computable functions 8 such 
q 

that 

(i) 6 (n) = o(t(n)) for all q and q 

(ii) 6p(n) = o(log log 6q(n)) for all 

p > q • 

First we define functions o by 
)tq~ q 

O q(n) = 22"J ~ . For n 3 q-P , we have 

qn ~ 3 + pn , [q~ ~ L3+p~ and therefore 

~p(n) < log log log Oq(n) = 

o(log log ~q(n)) 

So the functions ~ have the property 
q 

(ii), but they grow too fast. 

But the functions 6 defined by 
q 

6q(n)  = e q ( l O g * t ( n ) )  s o l v e  t h e  p r o b l e m .  

Now by Theorem }, there is a 

language ~ E DSPACETI~iE k (t,t.6q) and 

for any infinite set S ~ ~ and any ~J 

with ~'(S) = ~(S) we have 

~6 DTIME k (t.log log 6q) Therefore 

6p(n) = o(log log 6q(n)) implies 

-- ~' 6 DTIM~ k (t-6p(n)) for all p < q . 

Hence ~'~ DSPACETIKE (t,~6p) 

7. A final remark 

It is hoped that the tree representation 

of integers will have applications in 

other areas of computer science. Maybe 

in some connections a similar but a bit 

more complicated representation of in- 

tegers might be useful. This represen- 

tation was used in an earlier version of 

this paper. It still has the basic prop- 

erty of tree representation. The differ- 

ence is that higher in the tree more 

digits are stored (they cannot be im- 

plemented successively on an array), and 

therefore the representation of a number 

p is much shorter, e.g. log~ p . In 

this paper the length of the represen- 

tation of p is L = p~/log B 
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Appendix: 

Details of the linear time simulation 

(Lemma, paragraph 4). 

To describe the procedures for handling 

the tree representation of integers more 

precisely, we first define the storage 

organization. 

tape 

direct simulation of M 
q 

track 

code q (current instruction 

marked) 

tree representation of p' 

track 2 

track 3 

R, L, T: right son, left son, 

top (= root) 

current carry propagation path 

marked 

rest p" = p-p' 

track 4 

track 5 

track 6 

Figure 2: The organization of tape ~. 

Two work tapes, say tape ~ and tape 2 have 

six tracks each. Track ~ of each tape 

always contains a copy of the corresponding 

tape of the simulated Turing machine N 
q 

The purpose of the other tracks of tape 

is described in Figure 2. Under each coun- 

ter (= B-ary digit) in the tree represen- 

tation of the positive integer p' , we 

write in track 4 , if the position of the 

counter in the tree is that of a left or 

right son or the top. The tracks 2 to 6 

of tape 2 provide space to copy the cor- 

responding tracks of tape ~. This copying 

is necessary to move information fast. 

Now we describe the different pro- 

cedures which have to be done from time to 

time during the simulation. 

a) Construction of the tree representation 

First we note that the value of a number 

in tree representation of height H with 

all counters full is 
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H BH+d_2H+ d B H+2 

h~ =O 

If p is less than a constant c ~ B 2 

(typically c is chosen much bigger), 

then we don't construct a tree represen- 

tation, but we do the counting during the 

simulation in normal B-ary notation. If 

p ~ c then we choose H = LlOgB~-2 . 

This implies p' ~ p and the rest 

p" = p-p' is not too big. We compute p" 

and store it in track 6. 

Now the tree representation of p' 

can be put on track 3. It is just a se- 

quence of L = 2H+~-q times the symbol 

B-~ . To find the R (right), L (left) 

and T (top) markings for track 4, we 

note that the j-th marking (j=~,...,L) 

is R (resp. L, T) iff j in binary 

(without leading zeros) is of the form 

x~O...O (resp. xO~O...O, ~0...0) 

It is clear that all this can be 

done in time O(L) 

b) Destruction of the tree representation 

The values stored in the leaves (odd 

positions) are added to the rest p" , 

which is first copied onto tape 2. Then 

all leaves are cut by copying only the 

even positions of the tree representation 

onto tape 2. Naturally the remaining tree 

is compressed to implementation length 

LL/~ . This procedure is iterated, but 

each time the additions into p" are done 

at the next higher B-ary position. 

As for the construction, the time for 

destruction is only 0(~) . In both cases, 

even Llog B would be fast enough be- 

cause at least BH+~_~ ~ Llog B many 

simulation steps have been done in the 

meantime. 

c) Carries 

When we have to do a carry, then we mark 

its path on track 5- This path has either 

length ~ , or twice the length of the 

carry which has just been done. Doubling 

the path is easy, because we use a second 

tape. The markings on track 4 tell us on 

which side to find the father node. Be- 

fore doing carries, we have put a dis- 

tinguishing sign at the place where the 

simulation has to continue, and we always 

remember if this place is on the left or 

the right of the current head position. 

Then, finding back is easy. 

The time is proportional to the 

length of the carry propagation path, 

which is shorter than ~ in the average 

(if no carry means length 0). 

d) Shift of the tree representation 

When the head of tape ~ leaves the area 

of the tree representation, then we move 

the tree representation by (L+~)/2 . 

We can move the rest p" with it, be- 

cause the length of the B-ary represen- 

tation of p" is O(L) (even O(log L)). 

The time for the shift is O(L) and is 

charged to the preceeding (~+~)/2 simu- 

lation steps. 
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