Logika - Zadanie 119.

  1. \forall x_0 \forall \epsilon \exists \delta \forall x \{x_0 \in \mathbb{R}\Rightarrow \epsilon > 0 \Rightarrow \delta >0 \wedge [x \in \mathbb{R} \Rightarrow (|x-x_0|<\delta \Rightarrow |f(x)-f(x_0)|<\epsilon)]\}
  2. \forall \epsilon \exists \delta \forall x \{\epsilon >0 \Rightarrow \delta > 0 \wedge [x\in \mathbb{R} \Rightarrow (0<|x-x_0|<\delta \Rightarrow |f(x)-g|<\epsilon)]\}