====== Rachunek prawdopodobieństwa i statystyka - Lista 6. ====== ===== Zadanie 1. ===== ^ $x_i$ | -3 | -1 | 0 | 1 | 2 | 3 | ^ $p_i$ | 0.08 | 0.16 | 0.25 | 0.36 | 0.1 | 0.05 | $Y = X^2$. $\displaystyle P(Y = y_i) = \sum_{x_i: \; x_i^2 = y_i} p_i$, więc: ^ $y_i$ | 0 | 1 | 4 | 9 | ^ $q_i$ | 0.25 | 0.52 | 0.1 | 0.13 | ===== Zadanie 2. ===== $\sin$ jest okresowy, więc $y_i$ jest tylko trzy. $\displaystyle P(Y=-1) = \sum_{n: \; \sin (\pi n/2 ) = -1} 2^{-n} = \sum_k 2^{-4k-3} = \frac 1 8 \sum_k 2^{-4k} = \frac 1 8 \sum_k (\frac 1 {16})^{k} = \frac 1 8 \cdot \frac 1 {1 - \frac 1 {16}} = \frac {16} {120}$ $\displaystyle P(Y=1) = \sum_{n: \; \sin (\pi n/2 ) = 1} 2^{-n} = \sum_k 2^{-4k-1} = \frac 1 2 \sum_k 2^{-4k} = \frac {64} {120}$ $\displaystyle P(Y=0) = \sum_{n: \; \sin (\pi n/2 ) = 0} 2^{-n} = \sum_k 2^{-4k-2} + \sum_k 2^{-4k-4} = \frac {32} {120} + \frac {8} {120}$ ^ $y_i$ | -1 | 0 | 1 | ^ $P(Y=y_i)$ | $\frac {16} {120}$ | $\frac {40} {120}$ | $\frac {64} {120}$ | ===== Zadanie 3. ===== $\displaystyle f(x) = \frac 1 {2 \sqrt {\pi}} \exp \{ - \frac 1 2 x^2 \}$. $y = 3x+1$. Więc $x(y) = \frac 1 3 (y-1)$. $g(y) = f(x(y)) |h'(y)|$, więc $\displaystyle g(y) = \frac 1 {6 \sqrt {\pi}} \exp \{ - \frac 1 {18} (y-1)^2 \}$ ===== Zadanie 4. ===== $f(x) = 3\exp \{ -3x \}$, dla $x > 0$. $Y = X^2$. Więc $x(y) = y^{1/2}$. $g(y) = 3 \exp \{ -3y^{1/2} \} \cdot | y^{-1/2} |$. Jeśli $y$ jest rzeczywiste, można zdjąć moduł. ===== Zadanie 5. ===== $f(x) = \frac 1 {\sqrt {2 \pi}} \exp \{ - \frac 1 2 x^2 \}$. $Y=X^2$. Więc $x(y) = y^{1/2}$. $\displaystyle g(y) = \frac 2 {\sqrt {8 \pi y}} \exp \{ - \frac 1 2 y \} = \frac { (\frac 1 2)^{\frac 1 2} } {\Gamma(1/2)} \cdot y^{-1/2} \cdot \exp \{ - \frac 1 2 y \}$. A więc $Y \sim \Gamma(1/2, 1/2)$. ===== Zadanie 6. ===== $E(Z) = E( (X-aY)^2) = a^2E(Y^2) - 2aE(XY) + E(X^2) \geq 0$. $\Delta = 4(E(XY) )^2 - 4(E(Y^2)E(X^2) ) \leq 0$. $(E(XY) )^2 - E(Y^2)E(X^2) \leq 0$. $|E(XY)| \leq \sqrt{E(Y^2)E(X^2)}$. ===== Zadanie 7. ===== $D^2(X+a) = E(X+a-E(X+a))^2 = E(X-EX)^2 = D^2(X)$ ===== Zadanie 8. ===== $D^2(aX) = E(aX)^2 - (E(aX))^2 = a^2(EX^2-(EX)^2) = a^2D^2(X)$ ===== Zadanie 9. ===== $\displaystyle E(Y) = E \bigg(\frac {X - EX} {\sqrt{D^2(X)}} \bigg) = \frac {E(X - EX)} {\sqrt{D^2(X)}} = \frac {EX - EX} {\sqrt{D^2(X)}} = 0$ $\displaystyle D^2(Y) = D^2 \bigg ( \frac {X-EX} {\sqrt{D^2(X)}} \bigg) = \frac {D^2(X-EX)} {D^2(X)} = \frac {D^2(X)} {D^2(X)} = 1$ {{tag>[listy_zadan]}}