====== Algorytmy probabilistyczne - Lista 4. ====== ===== Zadanie 2 ===== Prawdopodobieństwo tego, że nie będzie kolizji przy B kulach i n pudełkach: $\displaystyle (1 - \frac 1 n) \cdot(1 - \frac 2 n) \cdot(1 - \frac 3 n) \cdot\dots\cdot(1 - \frac {B-1} n) = \prod^{B-1}_{j=1} (1 - \frac j n)$ $\displaystyle \prod^{B-1}_{j=1} (1 - \frac j n) \approx \prod^{B-1}_{j=1} e^{- \frac j n} = \exp\{-\sum^{B-1}_{j=1}\frac j n\} = \exp\{-B\cdot(B-1)/2n\}\approx \exp\{-B^2/2n\}$ $\displaystyle \frac 1 2 = e^{-\ln 2}$ Jak 0.5 to prawdopodobieństwo tego, że nie ma kolizji, to 1-0.5 = 0.5 to prawdopodobieństwo, że ta kolizja zajdzie. $\ln 2 = \frac {B^2} {2n}$ $B = \sqrt { 2n \ln n}$ ===== Zadanie 3 ===== $\displaystyle P(X \geq (1 + \delta)\mu) \leq exp\{-\mu \cdot \delta^{2} \cdot \frac 1 3\}$ $\displaystyle P(X \geq (1.5)\frac n 3) \leq exp\{-\frac n 3\cdot \frac 1 4\cdot \frac 1 3 \} = e^{-\frac n {36}}$ ===== Zadanie 4 ===== $ \displaystyle P(X \leq (1 - \delta)\mu) \leq exp\{-\mu \cdot \delta^{2} \cdot \frac 1 2 \}$ $\displaystyle P(X \leq (1 - \frac 1 3) \cdot \frac {3n} 4) \leq exp\{-\frac {3n} 4\cdot \frac 1 9\cdot \frac 1 2 \} = e^{-\frac n {24}}$ ===== Zadanie 5 ===== $ \displaystyle P(X \leq (1 - \delta)\mu) \leq exp\{-\mu \cdot \delta^{2} \cdot \frac 1 2 \}$ $ \displaystyle P(X \leq (1 - \delta)\frac {3n} 4) \leq exp\{-\frac {3n} 8 \cdot \delta^{2}\} = \frac 1 {n^5}$ $5 \ln n = \frac {3n} 8 \delta^2$ $\sqrt {\frac {40 \ln n} {3n}}=\delta$ $f(n) = (1 - \sqrt {\frac {40 \ln n} {3n}})\cdot \frac {3n} 4$ $ \displaystyle P(X \leq (1 - \delta)\frac {3n} 4) \leq exp\{-\frac {3n} 8 \cdot \delta^{2}\} = \frac 1 {e^{1.5n}}$ $1.5n = \frac {3n} 8 \cdot \delta^{2}$ $4 = \delta^{2}$ $\delta = 2$ Zły bound, bo $\delta$ powinna być $(0,1)$. ===== Zadanie 6 ===== $\displaystyle P(X \geq (1 + \delta)\mu) \leq exp\{-\mu \cdot \delta^{2} \cdot \frac 1 3\}$ $\displaystyle P(X \geq (1+\delta)1) \leq exp\{-\delta^2\cdot \frac 1 3 \}$ Co by tu zrobić, aby z $exp\{-\delta^2\cdot \frac 1 3 \}$ zrobić $\frac 1 {n^2}$. Podstawiamy $\delta = \sqrt {6\log n}$ $\displaystyle P(X \geq (1+\sqrt{6\ln n})1) \leq exp\{-6\ln n\cdot \frac 1 3 \}= \frac 1 {e^{\ln n^2}} = \frac 1 {n^2}$ $ m = 1 + \sqrt{6 \ln n}$ Zły bound, bo $\delta$ powinna być $(0,1)$.